Answer:
a) Factorizing [tex]6p^2 - 36p + 30[/tex] we get [tex]6(p-5)(p-1)[/tex]
b) Factorizing [tex]4y^2-64y+256[/tex] we get [tex]4(y-8)(y-8)[/tex]
Step-by-step explanation:
Factorise the given expressions :
a) [tex]6p^2 - 36p + 30[/tex]
First we take 6 common:
[tex]6p^2-36p+30\\=6(p^2-6p+5)\\=6(p^2-5p-p+5)\\=6(p(-5)-1(p-5))\\=6(p-5)(p-1)\\[/tex]
So, factorizing [tex]6p^2 - 36p + 30[/tex] we get [tex]6(p-5)(p-1)[/tex]
b) [tex]256 -64y + 4y^2[/tex]
Rearranging terms:
[tex]4y^2-64y+256[/tex]
Taking 4 common
[tex]4(y^2-16y+64)\\4(y^2-8y-8y+64)\\4(y(y-8)-8(y-8))\\4(y-8)(y-8)[/tex]
So, factorizing [tex]4y^2-64y+256[/tex] we get [tex]4(y-8)(y-8)[/tex]