Answer:
1. [tex]\frac{C}{D}[/tex] = 3.143
2. Circumference
3. Area of the circle is 3850 [tex]cm^{2}[/tex].
ii. Circumference of the circle is 220 cm.
Step-by-step explanation:
The area, A, and the circumference, c, of a circle can be determined respectively by:
A = [tex]\pi[/tex][tex]r^{2}[/tex]
C = 2[tex]\pi[/tex]r
where r is the radius of the circle.
1. the ratio of the circumference and diameter, D, of a circle is:
r = [tex]\frac{D}{2}[/tex]
so that,
C = 2[tex]\pi[/tex][tex]\frac{D}{2}[/tex]
C = [tex]\pi[/tex]D
[tex]\frac{C}{D}[/tex] = [tex]\pi[/tex]
= [tex]\frac{22}{7}[/tex]
= 3.143
2. The distance around a circular region is known as it's circumference.
3. Given a circle of radius 35 cm, then:
A = [tex]\pi[/tex][tex]r^{2}[/tex]
= [tex]\frac{22}{7}[/tex] x [tex](35)^{2}[/tex]
= [tex]\frac{22}{7}[/tex] x 1225
= 22 x 175
A = 3850
Area of the circle is 3850 [tex]cm^{2}[/tex].
C = 2[tex]\pi[/tex]r
= 2 x [tex]\frac{22}{7}[/tex] x 35
= 2 x 22 x 5
= 220
C = 220 cm
Circumference of the circle is 220 cm.