Respuesta :

Answer:

Solving [tex](13)^2+(b)^2=(18)^2[/tex] we get [tex]\mathbf{b=\sqrt{155},b=-\sqrt{155}}[/tex]

Step-by-step explanation:

13 squared plus b2 equals 18 squared. What is the answer?

We can write it as:

[tex](13)^2+(b)^2=(18)^2[/tex]

Now, solving and find value of b

We know that 13² = 169

and 18² = 324

Putting values:

[tex](13)^2+(b)^2=(18)^2\\169+b^2=324[/tex]

Subtract 169 on both sides

[tex]169+b^2-169=324-169\\b^2=155[/tex]

Now, taking square root on both sides

[tex]\sqrt{b^2}=\sqrt{155}\\b=\pm\sqrt{155}\\b=\sqrt{155},b=-\sqrt{155}[/tex]

So, solving [tex](13)^2+(b)^2=(18)^2[/tex] we get [tex]\mathbf{b=\sqrt{155},b=-\sqrt{155}}[/tex]