Respuesta :

The right presentation of the question is:

(a) Write 32 + 24 as a product of the two factors using the GCF and the distributive property.

(b) Write 32 + 23 as a product of the two factors using the GCF and the distributive property.

Answer:

[tex](a)\ 32 + 24 = 8*7[/tex]

[tex](b)\ 32 + 23 = 5*11[/tex]

Step-by-step explanation:

Solving (a):

First, we take the GCF of 32 and 24

[tex]32 = 2 * 2 * 2 * 2 * 2[/tex]

[tex]24 = 2 * 2 * 2 * 3[/tex]

Take common factors:

[tex]GCF = 2 * 2 * 2[/tex]

[tex]GCF = 8[/tex]

So, we factorize 32 and 24 using 8.

The expression becomes:

[tex]32 + 24 = 8(4 + 3)[/tex]

Simplify the expression in bracket

[tex]32 + 24 = 8(7)[/tex]

Remove bracket

[tex]32 + 24 = 8*7[/tex]

--------------------------------------------------------------------------------------------------

Solving (b):

[tex]32 + 23 =[/tex]

32 and 23 do not have a common factor, so we have to start by writing 32 as 30 + 2

[tex]32 + 23 = 30 + 2 + 23[/tex]

Add 2 to 23

[tex]32 + 23 = 30 + 25[/tex]

Take the GCF of 30 and 25

[tex]30 = 2 * 3 * 5[/tex]

[tex]25 = 5 * 5[/tex]

Take common factors:

[tex]GCF = 5[/tex]

So, we factorize 30 and 25 using 5.

[tex]32 + 23 = 5(6 + 5)[/tex]

Simplify the expression in bracket

[tex]32 + 23 = 5(11)[/tex]

Remove bracket

[tex]32 + 23 = 5*11[/tex]