A snowboarder leaves an 8-foot tall ramp with an upward velocity of 28 feet per second. The function h =− 16t 8t gives the height h (in 2 + 2 + 8 feet) of the snowboarder after t seconds. When does the snowboarder hit the ground?

Respuesta :

Answer:

2 seconds

Step-by-step explanation:

Given that:

h = -16t² + 28t + 8

Using quadratic formula:

[tex]\dfrac{-b \pm \sqrt{b^2 - 4ac}}{2a}[/tex]

where;

a = -16

b = +28

c = +8

[tex]= \dfrac{-(28) \pm \sqrt{(28)^2 - 4(-16)(8)}}{2(-16)}[/tex]

[tex]= \dfrac{-(28) \pm \sqrt{784+512}} {-32}[/tex]

[tex]= \dfrac{-(28) + \sqrt{784+512}} {-32} \ \ OR \ \ = \dfrac{-(28) - \sqrt{784+512}} {-32}[/tex]

[tex]=- \dfrac{1}{4} \ \ OR \ \ 2[/tex]

Since we are considering the positive value; Then it will take the snowboarder 2 seconds before it hits the ground.