Respuesta :

Answer:

D. [tex] x = \frac{5*\sqrt{2}}{2} [/tex]

Step-by-step explanation:

Reference angle = 45°

Length of Opposite side = x

Hypotenuse length = 5

Applying trigonometric ratio, we have:

[tex] sin(45) = \frac{x}{5} [/tex]

Multiply both sides by 5

[tex] 5*sin(45) = \frac{x}{5}*5 [/tex]

[tex] 5*sin(45) = x [/tex]

[tex] 5*\frac{1}{\sqrt{2}} = x [/tex] (sin 45 = 1/√2)

[tex] \frac{5}{\sqrt{2}} = x [/tex]

Rationalize

[tex] \frac{5*\sqrt{2}}{\sqrt{2}*\sqrt{2}} = x [/tex]

[tex] x = \frac{5*\sqrt{2}}{2} [/tex]