Answer:
We conclude that:
[tex]\left(6g^2\:\right)\times \left(-2g^3\right)=-12g^5[/tex]
Step-by-step explanation:
Given
The product of 6g² and -2g³ can be determined by multiplying each other such as:
[tex](6g^2\:)\times \:(-2g^3)[/tex]
Apply the rule: a(-b) = -ab
[tex]\left(6g^2\:\right)\times \left(-2g^3\right)=-6g^2\times \:\:2g^3[/tex]
Apply exponent rule: [tex]a^b\times \:a^c=a^{b+c}[/tex]
[tex]=-6g^{2+3}\times \:2[/tex]
[tex]=-6g^5\times \:2[/tex]
[tex]=-12g^5[/tex]
Therefore, we conclude that:
[tex]\left(6g^2\:\right)\times \left(-2g^3\right)=-12g^5[/tex]