Respuesta :

Answer:

We conclude that:

[tex]\left(6g^2\:\right)\times \left(-2g^3\right)=-12g^5[/tex]            

Step-by-step explanation:

Given

  • 6g²
  • -2g³

The product of 6g² and -2g³ can be determined by multiplying each other such as:

[tex](6g^2\:)\times \:(-2g^3)[/tex]

Apply the rule:  a(-b) = -ab

[tex]\left(6g^2\:\right)\times \left(-2g^3\right)=-6g^2\times \:\:2g^3[/tex]

Apply exponent rule:   [tex]a^b\times \:a^c=a^{b+c}[/tex]

                          [tex]=-6g^{2+3}\times \:2[/tex]

                          [tex]=-6g^5\times \:2[/tex]

                          [tex]=-12g^5[/tex]

Therefore, we conclude that:

[tex]\left(6g^2\:\right)\times \left(-2g^3\right)=-12g^5[/tex]