Respuesta :

                                                    Question 1

Given the sequence

31, 61, 91, 121,...

An arithmetic sequence has a constant difference 'd' and is defined by  

[tex]a_n=a_1+\left(n-1\right)d[/tex]

computing the differences of all the adjacent terms

61 - 31 = 30, 91 - 61 = 30, 121 - 91 = 30

The difference between all the adjacent terms is the same and equal to

d = 30

As the first term of the sequence is:

a₁ = 31

now substituting a₁ = 31 and d = 30 in the nth term of the sequence

[tex]a_n=a_1+\left(n-1\right)d[/tex]

[tex]a_n=30\left(n-1\right)+31[/tex]

[tex]a_n=30n+1[/tex]

Now, putting n = 36 to determine the 36th term

[tex]a_n=30n+1[/tex]

[tex]a_{36}=30\left(36\right)+1[/tex]

[tex]a_{36}=1080+1[/tex]

[tex]a_{36}=1081[/tex]

Thus,  the 36th term is:

[tex]a_{36}=1081[/tex]

                                               Question 2

Given the sequence

-34, -44, -54, -64, ...

An arithmetic sequence has a constant difference 'd' and is defined by  

[tex]a_n=a_1+\left(n-1\right)d[/tex]

computing the differences of all the adjacent terms

[tex]-44-\left(-34\right)=-10,\:\quad \:-54-\left(-44\right)=-10,\:\quad \:-64-\left(-54\right)=-10[/tex]

The difference between all the adjacent terms is the same and equal to

[tex]d=-10[/tex]

As the first term of the sequence is:

a₁ = -34

now substituting a₁ = -34 and d = -10 in the nth term of the sequence

[tex]a_n=a_1+\left(n-1\right)d[/tex]

[tex]a_n=-10\left(n-1\right)-34[/tex]

[tex]a_n=-10n-24[/tex]

Now, putting n = 26 to determine the 36th term

[tex]a_n=-10n-24[/tex]

[tex]a_{26}=-10\left(26\right)-24[/tex]

[tex]a_{26}=-260-24[/tex]

[tex]a_{26}=-284[/tex]

Thus, the 26th term is:

[tex]a_{26}=-284[/tex]