Respuesta :

Answer:

An equation in point-slope form of the line that passes through (-4,1) and (4,3) will be:

[tex]y-1=\frac{1}{4}\left(x+4\right)[/tex]

Step-by-step explanation:

Given the points

  • (-4,1)
  • (4,3)

Finding the slope between the points (-4,1) and (4,3)

[tex]\mathrm{Slope}=\frac{y_2-y_1}{x_2-x_1}[/tex]

[tex]\left(x_1,\:y_1\right)=\left(-4,\:1\right),\:\left(x_2,\:y_2\right)=\left(4,\:3\right)[/tex]

[tex]m=\frac{3-1}{4-\left(-4\right)}[/tex]

Refine

[tex]m=\frac{1}{4}[/tex]

Point slope form:

[tex]y-y_1=m\left(x-x_1\right)[/tex]

where

  • m is the slope of the line
  • (x₁, y₁) is the point

in our case,

  • m = 1/4
  • (x₁, y₁) = (-4,1)

substituting the values m = 1/4 and the point (-4,1) in the point slope form of line equation.

[tex]y-y_1=m\left(x-x_1\right)[/tex]

[tex]y-1=\frac{1}{4}\left(x-\left(-4\right)\right)[/tex]

[tex]y-1=\frac{1}{4}\left(x+4\right)[/tex]

Thus, an equation in point-slope form of the line that passes through (-4,1) and (4,3) will be:

[tex]y-1=\frac{1}{4}\left(x+4\right)[/tex]