Respuesta :

Answer:

[tex]\frac{cosec\alpha(1-cosx^{2} \alpha ) }{sin\alpha cos\alpha } = sec\alpha[/tex]

Step-by-step explanation:

Step(i):-

Given that the trigonometric function

            [tex]\frac{cosec\alpha(1-cosx^{2} \alpha ) }{sin\alpha cos\alpha }[/tex]

  we know that    sin²∝ + cos²∝ = 1

                      ⇒    sin²∝ = 1- cos²∝

Now we have to simplify the given trigonometric function

                =       [tex]\frac{cosec\alpha(sin^{2} \alpha ) }{sin\alpha cos\alpha }[/tex]

               =       [tex]\frac{cosec\alpha(sin \alpha ) }{ cos\alpha }[/tex]

Step(ii)

         we know that  cosec∝ = 1/ sin∝

              = [tex]\frac{\frac{1}{sin\alpha } (sin \alpha ) }{ cos\alpha }[/tex]

    After cancellation sine function, we get

          =  [tex]\frac{1 }{ cos\alpha } = sec\alpha[/tex]

Final answer:-

[tex]\frac{cosec\alpha(1-cosx^{2} \alpha ) }{sin\alpha cos\alpha } = sec\alpha[/tex]