Given:
The equation is
[tex]\tan(55^\circ)=\dfrac{15}{b}[/tex]
To find:
The length of the line segment AC.
Solution:
We have,
[tex]\tan(55^\circ)=\dfrac{15}{b}[/tex]
[tex]1.428148=\dfrac{15}{b}[/tex]
Multiply both sides by b.
[tex]1.428148b=15[/tex]
Divide both sides by 1.428148.
[tex]b=\dfrac{15}{1.428148}[/tex]
[tex]b=10.50311[/tex]
[tex]b\approx 10.503[/tex]
In a triangle ABC, the line of line segment AC is b. So,
[tex]AC\approx 10.503[/tex]
Therefore, the length of the line segment AC is 10.503 units.