Respuesta :
Given:
The three vertices of parallelogram DEFG are D(-4, - 2), E(-3, 1) and F(3, 3).
To find:
The coordinates of vertex G.
Solution:
Let the coordinates of vertex G are (a,b).
We know that, diagonal of parallelogram bisect equal other. It means, the midpoints of both diagonals are same.
Midpoint formula:
[tex]Midpoint=\left(\dfrac{x_1+x_2}{2},\dfrac{y_1+y_2}{2}\right)[/tex]
Two diagonals of the parallelogram DEFG are DF and EG.
[tex]\text{Midpoint of DF}=\text{Midpoint of EG}[/tex]
[tex]\left(\dfrac{-4+3}{2},\dfrac{-2+3}{2}\right)=\left(\dfrac{-3+a}{2},\dfrac{1+b}{2}\right)[/tex]
[tex]\left(\dfrac{-1}{2},\dfrac{1}{2}\right)=\left(\dfrac{-3+a}{2},\dfrac{1+b}{2}\right)[/tex]
On comparing both sides, we get
[tex]\dfrac{-3+a}{2}=-\dfrac{1}{2}[/tex]
[tex]-3+a=-1[/tex]
[tex]a=-1+3[/tex]
[tex]a=2[/tex]
And,
[tex]\dfrac{1+b}{2}=\dfrac{1}{2}[/tex]
[tex]1+b=1[/tex]
[tex]b=1-1[/tex]
[tex]b=0[/tex]
Therefore, the coordinates of vertex G are (2,0).
The coordinates of vertex G of parallelogram DEFG is: (2, 0).
Recall:
- Diagonals of a parallelogram bisects each other, meaning they divide each other into equal parts.
- Midpoint formula = [tex](\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2})[/tex]
The given vertices of parallelogram DEFG are:
D(-4, - 2), E(-3, 1) and F(3, 3)
Let (x, y) = coordinates of vertex G.
DF and EG are diagonals of parallelogram DEFG, therefore:
- midpoint of DF = midpoint of EG
Find midpoint of D(-4, - 2) and F(3, 3) using [tex](\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2})[/tex]:
[tex](\frac{-4 + 3}{2}, \frac{-2 + 3}{2}) = (\frac{-1}{2}, \frac{1}{2})[/tex]
Find midpoint of E(-3, 1) and G(x, y) using [tex](\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2})[/tex]:
[tex](\frac{-3 + x}{2}, \frac{1 + y}{2})[/tex]
Make the midpoint of DF equal to the midpoint of EG, then solve for x and y.
[tex]\frac{-1}{2}, \frac{1}{2} = \frac{-3 + x}{2}, \frac{1 + y}{2}[/tex]
- Solve for x:
[tex]\frac{-1}{2} = \frac{-3 + x}{2}[/tex]
- Cross multiply
[tex]2(-1) = 2(-3 + x)\\\\-2 = -6 + 2x\\\\-2 + 6 = 2x\\\\4 = 2x\\\\\mathbf{x = 2}[/tex]
- Solve for y:
[tex]\frac{1}{2} = \frac{1 + y}{2}[/tex]
- Cross multiply
[tex]2(1) = 2(1 + y)\\\\2 = 2 + 2y\\\\2 - 2 = 2y\\\\0 = 2y\\\\\mathbf{y = 0}[/tex]
Therefore, the coordinates of vertex G of parallelogram DEFG is: (2, 0).
Learn more about parallelogram on:
https://brainly.com/question/3050890