Answer:
a) the average value of e' over the time interval is [[tex]e^{54}[/tex] - 1] / 54
b) the value of t is 50.0111
Step-by-step explanation:
Given that;
time interval 0 < t < 54
let y = f(x)
average value of f(x) [a,b]
Av = 1/b-a [tex]\int\limits^b_a f({x}) \, dx[/tex]
so we substitute
Av = 1/(54-0) ⁵⁴∫₀ [tex]e^{t}[/tex] dx
= 1/54 [[tex]e^{t}[/tex]]₀⁵⁴ dx
= 1/54 [[tex]e^{54}[/tex] - [tex]e^{0}[/tex] ]
= 1/54 [[tex]e^{54}[/tex] - 1 ]
= [[tex]e^{54}[/tex] - 1] / 54
Therefore, the average value of e' over the time interval is [[tex]e^{54}[/tex] - 1] / 54
b)
given that; [tex]e^{t}[/tex] = [[tex]e^{54}[/tex] - 1] / 54
we apply natural logarithm (ln) on both RHS and LHS
ln ([tex]e^{t}[/tex]) = ln ([[tex]e^{54}[/tex] - 1] / 54)
t( ln(e) = ln [[tex]e^{54}[/tex] - 1] - ln (54)
t(1) = (54 - 0) - 3.9889
t = 54 - 3.9889
t = 50.0111
Therefore, the value of t is 50.0111