Answer:
[tex]\triangle U=-e (V_2-V_1)[/tex]
[tex]\triangle U=130eV[/tex]
[tex]V_2=\sqrt{ \frac{2}{me}(\frac{1}{2}meV_1^2+e(V_2-V_1)}[/tex]
Explanation:
From the question we are told that
The potential at point 1, [tex]V_1 = 24V[/tex]
The potential at point 2, [tex]V_2 = 154V[/tex]
a)Generally work done by proton is given as
 [tex]w=-\triangle U[/tex]
 [tex]e\triangle V=-\triangle U[/tex]
 [tex]\triangle U=-e (V_2-V_1)[/tex] Â
Generally the Equation for the change of electric potential energy AU of the proton, in terms of the symbols given and the charge of the proton e is mathematically given as
 [tex]\triangle U=-e (V_2-V_1)[/tex]
b)Generally the electric potential energy in electron volts (eV). is mathematically given as
 [tex]\triangle U=-e (154-24)V[/tex]
 [tex]|\triangle U| =|-e (130)V|[/tex]
 [tex]\triangle U=130eV[/tex]
c) Generally according to the law of conservation of energy
[tex](K.E+P.E)_1=(K.E+P.E)_2[/tex]
[tex]\frac{1}{2}meV_1^2+eV_1 =\frac{1}{2}mev_2^2+eV_2[/tex]
[tex]V_2^2=\frac{2}{me}(\frac{1}{2}meV_1^2+e(V_2-V_1)[/tex]
[tex]V_2=\sqrt{ \frac{2}{me}(\frac{1}{2}meV_1^2+e(V_2-V_1)}[/tex]