Particle A of charge 2.76 10-4 C is at the origin, particle B of charge -6.54 10-4 C is at (4.00 m, 0), and particle C of charge 1.02 10-4 C is at (0, 3.00 m). We wish to find the net electric force on C. What is the x component of the electric force?

Respuesta :

Answer:

a) F_net = 30.47 N ,   θ = 10.6º

b)  Fₓ = 29.95 N

Explanation:

For this exercise we use coulomb's law

          F₁₂ = k [tex]k \frac{ q_{1} \ q_{2} }{ r^{2} }[/tex]

the direction of the force is on the line between the two charges and the sense is repulsive if the charges are equal and attractive if the charges are different.

As we have several charges, the easiest way to solve the problem is to add the components of the force in each axis, see attached for a diagram of the forces

X axis

        Fₓ = [tex]F_{bc x}[/tex]

Y axis  

       [tex]F_{y}[/tex]Fy = [tex]F_{ab} - F_{bc y}[/tex]

let's find the magnitude of each force

     [tex]F_{ab}[/tex] = 9 10⁹ 2.76 10⁻⁴ 1.02 10⁻⁴ / 3²

      F_{ab} = 2.82 10¹ N

      F_{ab} = 28.2 N

   

      [tex]F_{bc}[/tex] = 9 10⁹ 6.54 10⁻⁴ 1.02 10⁻⁴ / 4²

      F_{bc} = 3.75 10¹  N

       F_{bc} = 37.5 N

let's use trigonometry to decompose this force

      tan θ = y / x

      θ = tan⁻¹ and x

       θ= tan⁻¹ ¾

      θ = 37º

let's break down the force

      sin 37 = F_{bcy} / F_{bc}

      F_{bcy} = F_{bc} sin 37

      F_{bcy} = 37.5 sin 37

      F_{bcy} = 22.57 N

      cos 37 = F_{bcx} /F_{bc}

      F_{bcx} = F_{bc} cos 37

      F_{bcx} = 37.5 cos 37

      F_{bcx} = 29.95 N

let's do the sum to find the net force

X axis

        Fₓ = 29.95 N

Axis y

        Fy = 28.2 -22.57

        Fy = 5.63 N

we can give the result in two ways

a)  F_net = Fₓ i ^ + [tex]F_{y}[/tex] j ^

    F_net = 29.95 i ^ + 5.63 j ^

b) in the form of module and angle

let's use the Pythagorean theorem

    F_net = [tex]\sqrt{ F_{x}^2 + F_{y}^2 }[/tex]

    F_net = √(29.95² + 5.63²)

     F_net = 30.47 N

we use trigonometry for the direction

      tan θ= [tex]\frac{ F_{y} }{ F_{x} }[/tex]

       

      θ = tan⁻¹ \frac{ F_{y}  }{  F_{x} }

      θ = tan⁻¹ (5.63 / 29.95)

      θ = 10.6º

Ver imagen moya1316