Respuesta :

Answer:

see explanation

Step-by-step explanation:

Using the chain rule

Given

y = f(g(x)), then

[tex]\frac{dy}{dx}[/tex] = f'(g(x))  × g'(x) ← chain rule

and the standard derivatives

[tex]\frac{d}{dx}[/tex] ([tex]log_{a}[/tex] x ) = [tex]\frac{1}{xlna}[/tex] , [tex]\frac{d}{dx}[/tex](lnx) = [tex]\frac{1}{x}[/tex]

(a)

Given

y = [tex]log_{a}[/tex][tex]\sqrt{(1+x)}[/tex]

[tex]\frac{dy}{dx}[/tex] = [tex]\frac{1}{lna\sqrt{(1+x)} }[/tex] × [tex]\frac{d}{dx}[/tex] ([tex](1+x)^{\frac{1}{2} }[/tex]

   = [tex]\frac{1}{lna\sqrt{(1+x)} }[/tex] × [tex]\frac{1}{2}[/tex] [tex](1+x)^{-\frac{1}{2} }[/tex] × [tex]\frac{d}{dx}[/tex] (1 + x)

   = [tex]\frac{1}{lna\sqrt{(1+x)} }[/tex] × [tex]\frac{1}{2\sqrt{(1+x)} }[/tex] × 1

   = [tex]\frac{1}{2lna(1+x)}[/tex]

   = [tex]\frac{1}{(1+x)lna^2}[/tex]

(b)

Given

y = ln sinx

[tex]\frac{dy}{dx}[/tex] = [tex]\frac{1}{sinx}[/tex] × [tex]\frac{d}{dx}[/tex](sinx)

   = [tex]\frac{1}{sinx}[/tex] × cosx

   = [tex]\frac{cosx}{sinx}[/tex]

   = cotx