Respuesta :

Answer:

The solution to the system of equations becomes:

(x, y) = (7, 12)

Step-by-step explanation:

Given the system of equations

[tex]5x - 3y = -1[/tex]

[tex]2x - y = 2[/tex]

Solving using the Elimination Method

[tex]\begin{bmatrix}5x-3y=-1\\ 2x-y=2\end{bmatrix}[/tex]

Multiply 5x - 3y = - 1 by 2:  10x - 6y = -2

Multiply 2x - y = 2 by 5:  10x - 5y = 10

[tex]\begin{bmatrix}10x-6y=-2\\ 10x-5y=10\end{bmatrix}[/tex]

subtraction operation

[tex]10x-5y=10[/tex]

[tex]-[/tex]

[tex]\underline{10x-6y=-2}[/tex]

[tex]y=12[/tex]

so the system of equations becomes

[tex]\begin{bmatrix}10x-6y=-2\\ y=12\end{bmatrix}[/tex]

Therefore, the value of y = 12

For 10x - 6y = -2 plug in y = 12

10x - 6y = -2

10x - 6(12) = -2

10x - 72 = -2

10x = -2+72

10x = 70

dividing both sides by 10

10x/10 = 70/10

x = 7

Therefore, the value of x = 7

Thus, the solution to the system of equations becomes:

(x, y) = (7, 12)