Answer:
The perimeter of triangle is: [tex]\mathbf{10x^2-x+18}[/tex]
Step-by-step explanation:
We need to find perimeter, in terms of x, of the triangle shown here.
The length of side 1: [tex](7x^2 - 12)[/tex]
The length of side 2: [tex](-5x + 30)[/tex]
The length of side 3: [tex](3x^2 + 4x)[/tex]
The formula used to find perimeter of triangle is: [tex]Perimeter\: of\: triangle=Sum\:of\:length\:of\:all\:sides[/tex]
Putting values and finding perimeter:
[tex]Perimeter\: of\: triangle=Sum\:of\:length\:of\:all\:sides\\Perimeter\: of\: triangle=(7x^2 - 12)+(-5x + 30)+(3x^2 + 4x)\\Perimeter\: of\: triangle= 7x^2-12-5x+30+3x^2+4x\\Perimeter\: of\: triangle=7x^2+3x^2-5x+4x-12+30\\Perimeter\: of\: triangle=10x^2-x+18[/tex]
So, The perimeter of triangle is: [tex]\mathbf{10x^2-x+18}[/tex]