Answer: The length = [tex]5\dfrac12[/tex] units
Step-by-step explanation:
Given: Area of carpet = [tex]4\dfarc18 \text{ sq. units}=\dfrac{33}{8}\text{ sq. units}[/tex]
Width of carpet = [tex]\dfrac34[/tex] units
Shape of carpet = Rectangle
Area of rectangle = length x width
So,
length = [tex]\dfrac{Area}{width}[/tex]
[tex]=\dfrac{\dfrac{33}{8}}{\dfrac34}\\\\=\dfrac{33}{8}\times\dfrac43\\\\=\dfrac{11}{2}\\\\=5\dfrac12\text{ units}[/tex]
Hence, the length = [tex]5\dfrac12[/tex] units