Answer: The other point is (17, -6).
Step-by-step explanation:
Midpoint (x,y) of the line segment joining (a,b) and (c,d) is given by :-
[tex](x,y) =(\dfrac{a+c}{2}, \dfrac{b+d}{2})[/tex]
Here, we need to find the other endpoint of a segment with one endpoint at(-3, 8) and the midpoint at (7, 1).
Let other point be (a,b), then
[tex](7,1)=(\dfrac{-3+a}{2},\dfrac{8+b}{2})\\\\\Rightarrow\ \dfrac{-3+a}{2}=7\ \text{ and }\dfrac{8+b}{2}=1\\\\\Rightarrow\ -3+a = 7\times2 \text{ and } 8+b=1\times2\\\\\Rightarrow\ -3+a=14\text{ and }8+b=2\\\\\Rightarrow\ a=14+3, \ \ \ b= 2-8\\\\\Rightarrow\ a=17, b= -6[/tex]
hence, the other point is (17, -6).