Respuesta :

Answer:

The length of Midsegment = 9

Step-by-step explanation:

the midsegment connecting the midpoints of two sides of a triangle is parallel to the third side of the triangle, and the length of this midsegment is half the length of the third side.

According to the Midsegment Theorem:

  • The midsegment connects the midpoints of two sides of a triangle is parallel to the third side of the triangle.
  • The length of this midsegment is half the length of the third side.

Thus,

The midsegment (x+4) is half the length of the third side (4x-2). so

[tex]\left(x+4\right)\:=\:\frac{1}{2}\:\left(4x\:-\:2\right)[/tex]

[tex]x+4=2x-1[/tex]

Subtract 4 from both sides

[tex]x+4-4=2x-1-4[/tex]

[tex]x=2x-5[/tex]

Subtract 2x from both sides

[tex]x-2x=2x-5-2x[/tex]

Simplify

[tex]-x=-5[/tex]

divide both sides by -1

[tex]\frac{-x}{-1}=\frac{-5}{-1}[/tex]

Simplify

[tex]x=5[/tex]

As

The length of Midsegment = x+4

                                             = (5) + 4        ∵ x = 5

                                             = 9

Therefore, the length of Midsegment = 9