Respuesta :

Answer:

1.) [tex](x-5)(x-1)[/tex]

2.) [tex](x-2)(x+11)[/tex]

3.) Prime

Solution Steps:

______________________________

1.) [tex]\bold{\sf{x^2-6x+5}}[/tex]:

  • Factor the expression by grouping. First, the expression needs to be rewritten as [tex]x^2+ax+bx+5[/tex]. To find a and b, set up a system to be solved:

 - [tex]a+b=-6[/tex]

 - [tex]ab=1*5=5[/tex]

  • Since ab is positive, a and b have the same sign. Since [tex]a+b[/tex] is negative, a and b are both negative. The only such pair is the system solution:

 - [tex]a=-5[/tex]

 - [tex]b=-1[/tex]

  • Rewrite [tex]x^2-6x+5[/tex]:

 - [tex](x^2-5x)+(-x+5)[/tex]

  • Factor out x in the first and −1 in the second group:

 - [tex]x(x-5)-(x-5)[/tex]

  • Factor out common term [tex]x-5[/tex] by using distributive property:

 - [tex](x-5)(x-1)[/tex]

2.) [tex]\bold{\sf{x^2+9x-22}}[/tex]:

  • Factor the expression by grouping. First, the expression needs to be rewritten as [tex]x^2+ax+bx-22[/tex]. To find a and b, set up a system to be solved:

 - [tex]a+b=9[/tex]

 - [tex]ab=1(-22)=-22[/tex]

  • Since ab is negative, a and b have the opposite signs. Since [tex]a+b[/tex] is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product −22:

 - [tex]-1,22[/tex]

 - [tex]-2,11[/tex]

  • Calculate the sum for each pair:

 - [tex]-1+22=21[/tex]

 - [tex]-2+11=9[/tex]

  • The solution is the pair that gives sum 9:

 - [tex]a=-2[/tex]

 - [tex]b=11[/tex]

  • Rewrite [tex]x^2+9x-22[/tex]:

 - [tex](x^2-2x)+(11x-22)[/tex]

  • Factor out x in the first and 11 in the second group:

 - [tex]x(x-2)+11(x-2)[/tex]

  • Factor out common term [tex]x-2[/tex] by using distributive property:

 - [tex](x-2)(x+11)[/tex]

3.) [tex]\bold{\sf{x^2+10x+8}}[/tex]:

 - This cannot be factored.

______________________________