Respuesta :
Answer:
[tex](2y - 1)( {4y}^{2} - 7)[/tex]
Step-by-step explanation:
1) Factor out common terms in the first two terms, then in the last two terms.
[tex] {4y}^{2} (2y - 1) - 7(2y - 1)[/tex]
2) Factor out the common term 2y - 1.
[tex](2y - 1)( {4y}^{2} - 7)[/tex]
Therefor the answer is, ( 2y - 1 ) ( 4y² - 7 ).
Answer:
[tex] \huge \boxed{ \boxed{ \red{ \sf (4 {y}^{ {2} } - 7)(2x - 1)}}}[/tex]
Step-by-step explanation:
to understand this
you need to know about:
- factoring
- PEMDAS
given:
- [tex] \sf 8 {y}^{3} - 4 {y}^{2} - 14y + 7[/tex]
to do:
- factoring
tips and formulas:
how to factor
- factor out common constants and terms
- group
let's do:
[tex] step - 1 : define \\ \sf{8y}^{3} - {4y}^{2} - 14y + 7[/tex]
[tex] step - 2 : solve[/tex]
- [tex] \sf factor \: - 7 \: and \: 4 {y}^{2} \: from \: the \: expression : \\ \sf 4 {y}^{ {2} } (2y -1 ) - 7(2y - 1)[/tex]
- [tex] \sf \: group : \\ \sf (4 {y}^{ {2} } - 7)(2x - 1)[/tex]