Find the distance between these points in two ways: (-2, 5) and (4, 13).
a. Use the point ( - 2, 5) as (x1, y1) and the point (4, 13) as (x2, y2) in the distance
formula.

Respuesta :

Space

Answer:

[tex]\displaystyle d = 10[/tex]

General Formulas and Concepts:

Pre-Algebra

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right

Algebra I

  • Coordinates (x, y)

Algebra II

  • Distance Formula: [tex]\displaystyle d = \sqrt{(x_2-x_1)^2+(y_2-y_1)^2}[/tex]

Step-by-step explanation:

Step 1: Define

Point (-2, 5)

Point (4, 13)

Step 2: Identify

x₁ = -2, y₁ = 5

x₂ = 4, y₂ = 13

Step 3: Find distance d

Simply plug in the 2 coordinates into the distance formula to find distance d

  1. Substitute in points [Distance Formula]:                                                        [tex]\displaystyle d = \sqrt{(4+2)^2+(13-5)^2}[/tex]
  2. [Distance] [√Radical] (Parenthesis) Add/Subtract:                                        [tex]\displaystyle d = \sqrt{(6)^2+(8)^2}[/tex]
  3. [Distance] [√Radical] Evaluate exponents:                                                    [tex]\displaystyle d = \sqrt{36+64}[/tex]
  4. [Distance] [√Radical] Add:                                                                              [tex]\displaystyle d = \sqrt{100}[/tex]
  5. [Distance] [√Radical] Evaluate:                                                                       [tex]\displaystyle d = 10[/tex]