Respuesta :

Answer:

[tex]\displaystyle (fg)(-\frac{1}{5})=0[/tex]

Step-by-step explanation:

We are given the two functions:

[tex]f(x)=x^2-13\text{ and } g(x)=5x+1[/tex]

And we want to find:

[tex]\displaystyle (fg)(-\frac{1}{5})[/tex]

This is equivalent to:

[tex]\displaystyle =f(-\frac{1}{5})g(-\frac{1}{5})[/tex]

By substitution:

[tex]\displaystyle f(-\frac{1}{5})=(-\frac{1}{5})^2-13=\frac{1}{25}-13=-\frac{324}{25}[/tex]

And:

[tex]\displaystyle g(-\frac{1}{5})=5(-\frac{1}{5})+1=-1+1=0[/tex]

Hence:

[tex]\displaystyle =(-\frac{324}{25})(0)=0[/tex]

Our final answer is:

[tex]\displaystyle (fg)(-\frac{1}{5})=0[/tex]