Respuesta :

Answer:

[tex]\frac{f(x+h)-f(x)}{h}[/tex][tex]=2x + h[/tex]

Step-by-step explanation:

Given

[tex]f(x)= x^2 + 2[/tex]

Required

Determine: [tex]\frac{f(x+h)-f(x)}{h}[/tex]

First, we calculate f(x + h)

[tex]f(x)= x^2 + 2[/tex]

[tex]f(x+h) = (x+h)^2+2[/tex]

[tex]f(x+h) = x^2+2xh+h^2+2[/tex]

So, we have:

[tex]\frac{f(x+h)-f(x)}{h}[/tex] [tex]= \frac{x^2 + 2xh + h^2 + 2 - x^2 - 2}{h}[/tex]

[tex]\frac{f(x+h)-f(x)}{h}[/tex][tex]= \frac{x^2 - x^2+ 2xh + h^2 + 2 - 2}{h}[/tex]

[tex]\frac{f(x+h)-f(x)}{h}[/tex] [tex]= \frac{2xh + h^2}{h}[/tex]

[tex]\frac{f(x+h)-f(x)}{h}[/tex][tex]=2x + h[/tex]