Answer:
9[tex]\sqrt{5}[/tex]
Step-by-step explanation:
Using the rule of radicals
[tex]\sqrt{a}[/tex] × [tex]\sqrt{b}[/tex] ⇔ [tex]\sqrt{ab}[/tex]
Simplify the radicals
[tex]\sqrt{20}[/tex]
= [tex]\sqrt{4(5)}[/tex]
= [tex]\sqrt{4}[/tex] × [tex]\sqrt{5}[/tex]
= 2[tex]\sqrt{5}[/tex]
[tex]\sqrt{45}[/tex]
= [tex]\sqrt{9(5)}[/tex]
= [tex]\sqrt{9}[/tex] × [tex]\sqrt{5}[/tex]
= 3[tex]\sqrt{5}[/tex]
Then
3[tex]\sqrt{20}[/tex] + [tex]\sqrt{45}[/tex]
= 3(2[tex]\sqrt{5}[/tex] ) + 3[tex]\sqrt{5}[/tex]
= 6[tex]\sqrt{5}[/tex] + 3[tex]\sqrt{5}[/tex]
= 9[tex]\sqrt{5}[/tex]