Answer:
12
Step-by-step explanation:
[tex]F \alpha \frac{1}{d^{2} }[/tex]
[tex]F = \frac{K}{d^{2} }[/tex]
When F = 18; d = 2
[tex]18 = \frac{K}{2^{2} }[/tex]
[tex]18 = \frac{K}{4}[/tex]
Cross multiply;
18 x 4 = K
72 = K
There the equation connecting F and [tex]d^{2}[/tex] is
[tex]F = \frac{72}{d}[/tex]
Now, Find F when d = 6
All you do is to substitute d = 6 in to [tex]F = \frac{72}{d}[/tex]
[tex]F = \frac{72}{6}[/tex]
Therefore;
F = 12
Please mark me brainiest if correct.