A candidate for a US Representative seat from Indiana hires a polling firm to gauge her percentage of support among voters in her district.

a. If a 95% confidence interval with a margin of error of no more than 0.04 is desired, give a close estimate of the minimum sample size that will guarantee that the desired margin of error is achieved. (Remember to round up any result, if necessary.)
b. If a 95% confidence interval with a margin of error of no more than 0.02 is desired, give a close estimate of the minimum sample size necessary to achieve the desired margin of error.

Respuesta :

Answer:

a) The minimum sample size is 601.

b) The minimum sample size is 2401.

Step-by-step explanation:

In a sample with a number n of people surveyed with a probability of a success of [tex]\pi[/tex], and a confidence level of [tex]1-\alpha[/tex], we have the following confidence interval of proportions.

[tex]\pi \pm z\sqrt{\frac{\pi(1-\pi)}{n}}[/tex]

In which

z is the zscore that has a pvalue of [tex]1 - \frac{\alpha}{2}[/tex].

The margin of error is:

[tex]M = z\sqrt{\frac{\pi(1-\pi)}{n}}[/tex]

For this problem, we have that:

We dont know the true proportion, so we use [tex]\pi = 0.5[/tex], which is when we are are going to need the largest sample size.

95% confidence level

So [tex]\alpha = 0.05[/tex], z is the value of Z that has a pvalue of [tex]1 - \frac{0.05}{2} = 0.975[/tex], so [tex]Z = 1.96[/tex].

a. If a 95% confidence interval with a margin of error of no more than 0.04 is desired, give a close estimate of the minimum sample size that will guarantee that the desired margin of error is achieved. (Remember to round up any result, if necessary.)

This is n for which M = 0.04. So

[tex]M = z\sqrt{\frac{\pi(1-\pi)}{n}}[/tex]

[tex]0.04 = 1.96\sqrt{\frac{0.5*0.5}{n}}[/tex]

[tex]0.04\sqrt{n} = 1.96*0.5[/tex]

[tex]\sqrt{n} = \frac{1.96*0.5}{0.04}[/tex]

[tex](\sqrt{n})^2 = (\frac{1.96*0.5}{0.04})^2[/tex]

[tex]n = 600.25[/tex]

Rounding up

The minimum sample size is 601.

b. If a 95% confidence interval with a margin of error of no more than 0.02 is desired, give a close estimate of the minimum sample size necessary to achieve the desired margin of error.

Now we want n for which M = 0.02. So

[tex]M = z\sqrt{\frac{\pi(1-\pi)}{n}}[/tex]

[tex]0.02 = 1.96\sqrt{\frac{0.5*0.5}{n}}[/tex]

[tex]0.02\sqrt{n} = 1.96*0.5[/tex]

[tex]\sqrt{n} = \frac{1.96*0.5}{0.02}[/tex]

[tex](\sqrt{n})^2 = (\frac{1.96*0.5}{0.02})^2[/tex]

[tex]n = 2401[/tex]

The minimum sample size is 2401.