You are explaining why astronauts feel weightless while orbiting in the space shuttle. Your friends respond that they thought gravity was just a lot weaker up there. Convince them and yourself that it isn't so by calculating the acceleration of gravity 608 km above the Earth's surface in units of g. (The mass of the Earth is 5.97 x 1024 kg, and the radius of the Earth is 6380 km.)

Respuesta :

Answer:

The answer is "83.1%".

Explanation:

Given:

[tex]\text{Mass of the earth}\ (M_E) = 5.97 \times 10^{24}\ \ kg\\\\\text{Radius of the earth}\ (R_E) = 6380 \ km = 6.38 \times 10^{6}\ \ m\\\\\text{acceleration of gravity}\ (g_E) = 608 \ \ km= 608,000 \ \ m \\\\G= 6.67 \times 10^{-11} \ \ \frac{N \cdot n^2}{kg^2}[/tex]

Using formula:

[tex]\to g_E = G \frac{M_E}{(R_E +h)^2}[/tex]

[tex]\to g_{608 \ km}=6.67\times10^{-11}\frac{5.97 \times 10^{24}}{(6.38 \times 10^{6}+ 608,000)^2}\\\\\to g_{608 \ km}=6.67\times10^{-11}\frac{5.97 \times 10^{24}}{(6,380,000+ 608,000)^2}\\\\\to g_{608 \ km} =6.67\times10^{-11}\frac{5.97 \times 10^{24}}{(6,380,000+ 608,000)^2}\\\\\to g_{608 \ km}=6.67\times10^{-11}\frac{5.97 \times 10^{24}}{(6,988,000)^2}\\\\\to g_{608 \ km}=6.67\times10^{-11}\frac{5.97 \times 10^{24}}{4.88 \times 10^{13}}\\\\[/tex]

[tex]\to g_{608 \ km}=6.67\times10^{-24}\frac{5.97 \times 10^{24}}{4.88}\\\\\to g_{608 \ km}=6.67\times \frac{5.97}{4.88}\\\\\to g_{608 \ km}=6.67\times 1.22336066\\\\\to g_{608 \ km}= 8.15 \ \frac{m}{s^2}[/tex]

Calculating the gravity on the Earth’s surface:

[tex]\to \frac{g_{608 \ km} }{ g_{\ earth \ surface}}[/tex] [tex]= \frac{8.15}{9.8} \times 100=83.1 \%[/tex]