Respuesta :
Answer:
0.4
None of the above
Explanation:
Given the distribution :
c ___$0 ___ $1000 ____ $4000 ___ $10000
P(c) _0.6 ____0.05 ______ 0.13 _____ 0.22
Probability of atleast $1000 :
P(x ≥ 1000) : P(x = 1000) + P(x = 4000) + P(x = 10000)
P(x ≥ 1000) = 0.05 + 0.13 + 0.22
P(x ≥ 1000) = 0.4
The probability of the insurance company having to pay the claim of a minimum of $1000 for a randomly opted car's model would be:
e). 0.406
As per the data provided,
c P(c)
$0 0.6
$1000 0.05
$4000 0.13
$10000 0.22
Probability of insurance company having to pay the claim of a minimum of $1000 for a randomly opted car's model(P):
[tex]P(x[/tex] [tex]\geq[/tex] [tex]1000) : P(x = 1000) + P(x = 4000) + P(x = 10000)[/tex]
[tex]P(x \geq 1000)[/tex] [tex]= 0.05 + 0.13 + 0.22[/tex]
∵ [tex]P(x \geq 1000)[/tex] [tex]= 0.406[/tex]
Thus, option e is the correct answer.
Learn more about "Probability" here:
brainly.com/question/11234923