Solution :
It is given that P(x) is said to be complete or proper probability distribution if it satisfies the following two ways :
1. [tex]$P(x) \geq 0$[/tex]
2. [tex]$\sum_z P(x) = 1$[/tex]
Now consider,
[tex]$\sum_z P(x) = 1$[/tex]
⇒ [tex]$P(x=0)+P(x=1)+P(x=2)+P(x=3)+P(x=4)+P(x=5)=1$[/tex]
⇒ [tex]$0.61+T+0.14+0.01+0.01+0.03=1$[/tex]
⇒ [tex]$0.8+T=1$[/tex]
⇒ [tex]$T=1-0.8$[/tex]
    = 0.2
Therefore, the value of T is 0.2
Thus, option (c) is correct.