Respuesta :

Given:

The functions are

[tex]f(x)=-5x^2+4x-9[/tex]

[tex]g(x)=8x^2-3x-4[/tex]

To find:

The value of (f+g)(x).

Solution:

We know that,

[tex](f+g)(x)=f(x)+g(x)[/tex]

Putting the given functions, we get

[tex](f+g)(x)=-5x^2+4x-9+8x^2-3x-4[/tex]

On combining like terms, we get

[tex](f+g)(x)=(-5x^2+8x^2)+(4x-3x)+(-9-4)[/tex]

[tex](f+g)(x)=3x^2+x-13[/tex]

Therefore, the required function is [tex](f+g)(x)=3x^2+x-13[/tex].