Answer:
The answer is "0.019".
Explanation:
For HIV positive: [tex]P[HIV{+}] =\frac{1}{5000}[/tex]
For HIV negative: [tex]P[HIV{-}] =\frac{4999}{5000}[/tex]
calculating the proability for test gives right reslut: [tex]P[TV] =\frac{99}{100}[/tex]
calculating the proability for test gives wrong reslut: [tex]P[TX] =\frac{1}{100}[/tex]
For HIV negative: [tex]P[HIV{-}] = p[TX]= \frac{1}{100}[/tex]
calculating proability to have HIV:
[tex]P[HIV{+}] = \frac{P[HIV{-} \times HIV{-}]}{P{+}}[/tex]
        [tex]= \frac{\frac{1}{5000} \times \frac{99}{100}}{\frac{1}{5000} \times \frac{99}{100}+\frac{4999}{5000} \times\frac{1}{100}}\\\\= \frac{\frac{1}{5000} \times 0.99}{\frac{1}{5000} \times 0.99+\frac{4999}{5000} \times0.01}\\\\= \frac{\frac{0.99}{5000} }{\frac{0.99}{5000} +\frac{49.99}{5000}}\\\\= \frac{0.000198}{0.000198 +0.009998}\\\\= \frac{0.000198}{0.010196}\\\\=0.019[/tex]