Answer:
The answer is "[tex]2.352 \ \frac{m}{s}[/tex]"
Explanation:
[tex]\to mass(m_1)=102 \ kg\\\\\to mass(m_2)=10 \ kg \\\\\to v=2.10\ \frac{m}{s}\\\\[/tex]
momentum before:
[tex]\to p=(m_1+m_2)v[/tex]
[tex]=(102+10)2.10\\\\=(102\times 2.10 +10 \times 2.10)\\\\=214.2+21\\\\=235.2[/tex]
momentum After:
[tex]\to p=(m_1+m_2)v[/tex]
[tex]=(102\times 0 +10 \times v)\\\\ =(0 +10v)\\\\=10v\\[/tex]
Calculating the conservation of momentum:
[tex]\to \text{momentum before = momentum After}[/tex]
[tex]\to 235.2=10v\\\\\to v= \frac{235.2}{10}\\\\ \to v=2.352 \ \frac{m}{s}[/tex]