Answer:
g o f = [tex]g(f(x)) = 32x^2 + 32x + 4[/tex]
Step-by-step explanation:
Given
[tex]f(x) = 4x +2[/tex]
[tex]g(x) =2x^2 - 4[/tex]
Required:
Find g o f
This is calculated as:
[tex]gof = g(f(x))[/tex]
[tex]g(x) =2x^2 - 4[/tex]
So:
[tex]g(f(x)) = 2(4x+2)^2 - 4[/tex]
[tex]g(f(x)) = 2(4x+2)(4x+2) - 4[/tex]
[tex]g(f(x)) = 2[ 16x^2 + 16x + 4)] - 4[/tex]
[tex]g(f(x)) = 32x^2 + 32x + 8 - 4[/tex]
[tex]g(f(x)) = 32x^2 + 32x + 4[/tex]