Respuesta :

Answer:

g o f = [tex]g(f(x)) = 32x^2 + 32x + 4[/tex]

Step-by-step explanation:

Given

[tex]f(x) = 4x +2[/tex]

[tex]g(x) =2x^2 - 4[/tex]

Required:

Find g o f

This is calculated as:

[tex]gof = g(f(x))[/tex]

[tex]g(x) =2x^2 - 4[/tex]

So:

[tex]g(f(x)) = 2(4x+2)^2 - 4[/tex]

[tex]g(f(x)) = 2(4x+2)(4x+2) - 4[/tex]

[tex]g(f(x)) = 2[ 16x^2 + 16x + 4)] - 4[/tex]

[tex]g(f(x)) = 32x^2 + 32x + 8 - 4[/tex]

[tex]g(f(x)) = 32x^2 + 32x + 4[/tex]