Respuesta :

Answer:

The answer is

m<p =66°21'14"

m<R =37°38'46"

PR =28,6

Step-by-step explanation:

[tex] {pr}^{2} = {18}^{2} + {27}^{2} - 2 \times 18 \times 27 \cos(76) = 817.85 \\ pr = 28.6 \\ \cos(p) = \frac{ {18}^{2} + {28.6}^{2} - { {27}^{2} } }{2 \times 18 \times 28.6 } = 0.4 \\ m < p = 66.42 \\ m < r = 180 - 76 - 66.42 = 37.58[/tex]