Respuesta :
Answer:
[tex]\frac{x}{y}[/tex] = 4
Step-by-step explanation:
Expressing in fractional form, that is
[tex]\frac{4x-y}{2x+y}[/tex] = [tex]\frac{5}{3}[/tex] ( cross- multiply )
3(4x - y) = 5(2x + y) ← distribute both sides
12x - 3y = 10x + 5y ( subtract 10x from both sides )
2x - 3y = 5y ( add 3y to both sides )
2x = 8y ( divide both sides by 2 )
x = 4y ( divide both sides by y )
[tex]\frac{x}{y}[/tex] = 4
Answer:
[tex] \boxed{ \frac{x}{y} = 4}[/tex]
Step-by-step explanation:
[tex]if \: \frac{4x-y}{2x+y}=\frac{5}{3}, \: then \: \frac{x}{y} = : \\ 3(4x - y) = 5(2x + y) \\ 12x - 3y = 10x + 5y \\ 2x = 8y \\ \frac{2x}{y} = 8 \\ \frac{x}{y} = 4[/tex]