Respuesta :

Answer:

[tex]\frac{x}{y}[/tex] = 4

Step-by-step explanation:

Expressing in fractional form, that is

[tex]\frac{4x-y}{2x+y}[/tex] = [tex]\frac{5}{3}[/tex] ( cross- multiply )

3(4x - y) = 5(2x + y) ← distribute both sides

12x - 3y = 10x + 5y ( subtract 10x from both sides )

2x - 3y = 5y ( add 3y to both sides )

2x = 8y ( divide both sides by 2 )

x = 4y ( divide both sides by y )

[tex]\frac{x}{y}[/tex] = 4

Answer:

[tex] \boxed{ \frac{x}{y} = 4}[/tex]

Step-by-step explanation:

[tex]if \: \frac{4x-y}{2x+y}=\frac{5}{3}, \: then \: \frac{x}{y} = : \\ 3(4x - y) = 5(2x + y) \\ 12x - 3y = 10x + 5y \\ 2x = 8y \\ \frac{2x}{y} = 8 \\ \frac{x}{y} = 4[/tex]