eedely4
contestada

Given the following 30-60-90 triangle , find the value of x and y Round to the nearest tenth x = 5.2 X = 6 Y = 6 Y = 5.2​

Given the following 306090 triangle find the value of x and y Round to the nearest tenth x 52 X 6 Y 6 Y 52 class=

Respuesta :

Step-by-step explanation:

tan30° = Opposite/Adjacent = 3/x.

=> 3/x = √3/3, x = 3√3 = 5.2.

sin30° = Opposite/Hypotenuse = 3/y.

=> 3/y = 1/2, y = 6.

The correct answer is the 1st and 3rd options.

Answer:

[tex] \huge \boxed{ \boxed{ \sf \: x = 5.2 \atop\sf y = 6}}[/tex]

Step-by-step explanation:

to understand this

you need to know about:

  • trigonometry
  • PEMDAS

given:

  • [tex] \theta = {30}^{o} [/tex]
  • opp:3

to find:

  • adjacent (x)
  • hypotenuse (y)

tips and formulas:

  • [tex] \tan( {30}^{o} ) = \frac{ \sqrt{3} }{3} [/tex]
  • tan(a)=opp/adj
  • sin(a)=opp/hypo
  • [tex] \sin( {30}^{o} ) = \frac{1}{2} [/tex]

let's solve:

according to the question

[tex] \tan( {30}^{o} ) = \frac{3}{x} [/tex]

[tex] \frac{ \sqrt{3} }{3} = \frac{3}{x} \\ x\sqrt{3} = 9 \\ x = \frac{9}{ \sqrt{3} } \\ x = 3\sqrt{3} \\ x = 5.2[/tex]

according to the question

[tex] \sin( {30}^{o} ) = \frac{3}{y} [/tex]

[tex] \frac{1}{2} = \frac{3}{y} [/tex]

[tex]y = 6[/tex]