Respuesta :

Lanuel

Answer:

I. x = -3

II. y = -2

Explanation:

Given the following algebraic equation;

[tex] -6x + 5y = 8 [/tex] .........equation 1

[tex] 2x - 4y = 2 [/tex] ..........equation 2

We would solve the algebraic equation using the substitution method

From equation 1;

[tex] 5y = 8 + 6x [/tex]

[tex] y = \frac {8 + 6x}{5} [/tex] .....equation 3

Substituting eqn 3 into eqn 2, we have;

[tex] 2x - 4(\frac {8 + 6x}{5}) = 2 [/tex]

[tex] 2x - \frac{32 + 24x}{5} = 2 [/tex]

Multiplying all through by 5

[tex] 10x - 32 - 24x = 10 [/tex]

Rearranging the equation, we have:

[tex] 10x - 24x = 10 + 32 [/tex]

[tex] -14x = 42[/tex]

[tex] x = \frac {-42}{14} [/tex]

x = -3

Next we find the value of y;

From eqn 3;

[tex] y = \frac {8 + 6x}{5} [/tex]

Substituting the value of "x" into the equation, we have;

[tex] y = \frac {8 + 6*(-3)}{5} [/tex]

[tex] y = \frac {8 - 18}{5} [/tex]

[tex] y = \frac {-10}{5} [/tex]

y = -2