Respuesta :

Answer:

center (0;0), vertices (0;10) and (0;-10), foci (0;6) and (0;-6)

Step-by-step explanation:

Answer:

[tex]\boxed{\boxed{C) Center:(0,0);\: Vertices:(-10,0),(10,0);\:Foci:(-6,0),(0,6)}}[/tex]

Step-by-step explanation:

to understand this

you need to know about:

  • conic geometry
  • algebra
  • PEMDAS

given:

  • [tex] \frac{ {x}^{2} }{100} + \frac{ {y}^{2} }{64} = 1[/tex]

to find:

  • center
  • vertices
  • foci

tips and formulas:

  • [tex] \sf ellipse \:equation : \\ \tt\frac{( {x}^{2} - h)}{ {a}^{2} } + \frac{( {y}^{2} - k)}{ {b}^{2} } = 1[/tex]
  • [tex] \sf c(h,k)[/tex]
  • [tex] \sf v(h \pm a,k)[/tex]
  • [tex]\sf F(h\pm c,k)[/tex]
  • [tex] \sf c = \sqrt{ {a}^{2} - {b}^{2} } [/tex]

let's solve:

  1. [tex] \sf rewrite \:the \: given \: equation \: as \: ellipse \: equation \\ \tt \frac{ {(x - 0)}^{2} }{100} + \frac{ ({y - 0)}^{2} }{64} = 1[/tex]

since we can see that h and k is 0

therefore

c(0,0)

[tex] \sf vertices :( h \pm a,k)[/tex]

given:a²=100

let's find a

a=√100

a=10

therefore

vertices:(0±10,0)

=(0+10,0) and (0-10,0)

=(10,0) and (-10,0)

[tex] \sf foci : (h \pm c,k)[/tex]

[tex] \tt c = \sqrt{ {a}^{2} - {b}^{2} } [/tex]

[tex] \sf \: c = \sqrt{ {10}^{2} - {8}^{2} } \\ \sf \: c = \sqrt{(10 + 8)(10 - 8)} \\ \sf c = \sqrt{(18)(2)} \\ \sf c = \sqrt{36} \\ \tt c = 6 [/tex]

therefore,

foci:(h±c,k)

=(0±6,0)

=(0+6,0) and (0-6,0)

=(6,0) and (-6,0)

[tex]\text{also see the graph} [/tex]

Ver imagen Аноним