Please help!!
Find the center, vertices, and foci of the ellipse with equation

Answer:
center (0;0), vertices (0;10) and (0;-10), foci (0;6) and (0;-6)
Step-by-step explanation:
Answer:
[tex]\boxed{\boxed{C) Center:(0,0);\: Vertices:(-10,0),(10,0);\:Foci:(-6,0),(0,6)}}[/tex]
Step-by-step explanation:
since we can see that h and k is 0
therefore
c(0,0)
[tex] \sf vertices :( h \pm a,k)[/tex]
given:a²=100
let's find a
a=√100
a=10
therefore
vertices:(0±10,0)
=(0+10,0) and (0-10,0)
=(10,0) and (-10,0)
[tex] \sf foci : (h \pm c,k)[/tex]
[tex] \tt c = \sqrt{ {a}^{2} - {b}^{2} } [/tex]
[tex] \sf \: c = \sqrt{ {10}^{2} - {8}^{2} } \\ \sf \: c = \sqrt{(10 + 8)(10 - 8)} \\ \sf c = \sqrt{(18)(2)} \\ \sf c = \sqrt{36} \\ \tt c = 6 [/tex]
therefore,
foci:(h±c,k)
=(0±6,0)
=(0+6,0) and (0-6,0)
=(6,0) and (-6,0)
[tex]\text{also see the graph} [/tex]