Solve for x in the partial spiral below.

Answer:
[tex] x = \sqrt 5[/tex]
Step-by-step explanation:
On solving by Pythagoras theorem:
(Going in counterclockwise direction)
For bottom most triangle :
Length of Hypotenuse [tex] = \sqrt {1^2 +1^2} =\sqrt {1+1}=\sqrt 2[/tex]
The for second triangle :
Length of Hypotenuse [tex] = \sqrt {(\sqrt 2) ^2 +1^2} =\sqrt {2+1}=\sqrt 3[/tex]
The for third triangle :
Length of Hypotenuse [tex] = \sqrt {(\sqrt 3) ^2 +1^2} =\sqrt {3+1}=\sqrt 4 = 2[/tex]
The for fourth triangle :
x [tex] = \sqrt {(2) ^2 +1^2} =\sqrt {4+1}=\sqrt 5 [/tex]