Respuesta :

Answer:

The length of the hypotenuse is 6 units.

Option D is correct.

Step-by-step explanation:

Given

  • The angle Ф = 45°
  • The opposite side of angle Ф is [tex]3\sqrt{2}[/tex]

To determine

The hypotenuse = ?

Using the trigonometric ratio

[tex]sin\:\theta \:\:=\:\:\frac{opposite\:}{hypotenuse}[/tex]

In our case,

  • Ф = 45°
  • The opposite side of the Ф is [tex]3\sqrt{2}[/tex]

now substituting Ф = 45° and opposite = [tex]3\sqrt{2}[/tex] in the trigonometric ratio formula

[tex]\sin \left(45^{\circ \:\:}\right)=\:\:\frac{3\sqrt{2}\:}{hypotenuse}[/tex]

[tex]\frac{\sqrt{2}}{2}=\frac{3\sqrt{2}\:}{hypotenuse}\:\:\:[/tex]            ∵ [tex]\sin \left(45^{\circ \:}\right)=\frac{\sqrt{2}}{2}[/tex]

[tex]hypotenuse\:=\frac{2\times 3\sqrt{2}}{\sqrt{2}}[/tex]

[tex]\:hypotenuse\:=\frac{6\sqrt{2}}{\sqrt{2}}[/tex]

[tex]hypotenuse\:=\:6[/tex] units

Therefore, the length of the hypotenuse is 6 units.

Option D is correct.