Respuesta :

Answer:

Step-by-step explanation:

1). Let the circumference C and area A of the circle are proportional,

   C ∝ A

   C = kA

   Here k = proportionality constant

   k = [tex]\frac{C}{A}[/tex]

   From the given table,

   For C = 25 cm, A = 50 cm²

   Then the value of k = [tex]\frac{25}{50}[/tex]

                                  k = [tex]\frac{1}{2}[/tex]

    For C = 50 cm, A = 201 cm²

    k = [tex]\frac{50}{201}[/tex] ≈ [tex]\frac{1}{4}[/tex]

    In both the cases proportionality constant is giving the different values.

    Therefore, Circumference and Area of the circular objects are not proportional.

2). If A = [tex]\frac{1}{2}\times r\times C[/tex]

    Then this equation will be true for all the values of r and C given in the table.

    For r = 4 cm and C = 25 cm

    A = [tex]\frac{1}{2}\times 4\times 25[/tex] = 50 cm²

    For r = 8 cm and C = 50 cm

    A = [tex]\frac{1}{2}\times 8\times 50[/tex]

    A = 200 cm²

    True for all values of 'r' and 'C'.

Answer:

665

Step-by-step explanation: