If lines a and b are parallel, and m<8=150, what is the m<2

Step-by-step explanation:
[tex] \underline{\large{ \tt{G \: I \: V \: E \: N}}} : [/tex]
[tex] \underline{ \large{ \tt{T \: O\: \: F \: I \: N \:D}}} : [/tex]
[tex] \underline{ \large{ \tt{S\: O \:L \: U \: T \: I \: O \: N}}} : [/tex]
[tex] \large{ \tt{m \: \angle \: 8 \: + \: m \: \angle \: 2 = 180 \degree}}[/tex] [ Sum of co-interior angles ]
⤑ [tex] \large{ \tt{150 \degree \: + m \: \angle \: 2}} = 180 \degree[/tex]
⤑ [tex] \large{ \tt{m \angle \: 2 \: = \: 180 \degree - 150 \degree}}[/tex]
⤑ [tex] \large{ \tt{m \: \angle \: 2 \: = \bold{ \tt{30 \degree}}}}[/tex]
[tex] \red{ \boxed{ \boxed{ \tt{Our \: final \: answer : \boxed{ \underline{ \bold{ \tt{30 \degree}}}}}}}}[/tex]
Hope I helped ! ♡
Have a wonderful day / night ! ツ
# [tex] \underbrace{ \tt{Carry \: On \: Learning}}[/tex] !!
▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁
Given:-
⠀⠀
To Find:-
⠀⠀
Solution:-
m∠2 = 30°
⠀⠀
Step by Step Explanation:-
⠀⠀
[tex]\begin{gathered}\:\: :\implies\sf m\angle\;8 \;+\:m\angle\;2 =180 ^{\circ}\\\\\\ :\implies\sf 150 ^{\circ}\: + m\angle\;2 = 180 ^{\circ}\\\\\\ :\implies\sf m\angle\;2 = 180 ^{\circ} - 150 ^{\circ}\\\\\\:\implies\sf m\angle\;2 = 30 ^{\circ}\end{gathered}[/tex]
⠀⠀