Respuesta :

Answer:

[tex]\sqrt{15.25}[/tex]

Step-by-step explanation:

To find the distance, we can use the distance formula:

[tex]d=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}[/tex] when the given points are [tex](x_1,y_1)[/tex] and [tex](x_2,y_2)[/tex]

Plug in the points (-6.25,5) and (-3.75,2)

[tex]d=\sqrt{(-6.25-x_1)^2+(5-y_1)^2}\\d=\sqrt{(-6.25-(-3.75))^2+(5-2)^2}\\d=\sqrt{(-6.25+3.75)^2+(5-2)^2}\\d=\sqrt{(-2.5)^2+(3)^2}\\d=\sqrt{6.25+9}\\d=\sqrt{15.25}[/tex]

Therefore, the distance between the two coordinates is [tex]\sqrt{15.25}[/tex], or approximately 3.91.

I hope this helps!