Respuesta :
Answer:
Follows are the solution to this question:
Step-by-step explanation:
In point a:
Although both variables are non - stationary, for both the respective pmf, multiply all pmf principles. For example:
[tex]\to P(x=0,y=0)=P(x=0)\times P(y=0)[/tex]
[tex]X[/tex]
[tex]0 \ \ \ \ \ \ \ \ \ \ \ \ \ \ 1\ \ \ \ \ \ \ \ \ \ \ \ \ \ 2\ \ \ \ \ \ \ \ \ \ \ \ \ \ 3 \ \ \ \ \ \ \ \ \ \ \ \ \ \ 4 \ \ \ \ \ \ \ \ \ \ \ \ \ \ pmf Y[/tex]
[tex]0 \ \ \ \ \ \ \ \ \ \ \ \ \ \ 0.01 \ \ \ \ \ \ \ \ \ \ \ \ \ \ 0.02 \ \ \ \ \ \ \ \ \ \ \ \ \ \ 0.03\ \ \ \ \ \ \ \ \ \ \ \ \ \ 0.02\ \ \ \ \ \ \ \ \ \ \ \ \ \ 0.02\ \ \ \ \ \ \ \ \ \ \ \ \ \ 0.1[/tex]
[tex]Y \ \ \ \ \ \ \ \ \ \ \ 1 \ \ \ \ \ \ \ \ \ \ \ 0.03 \ \ \ \ \ \ \ \ \ \ \ 0.06 \ \ \ \ \ \ \ \ \ \ \ 0.09 \ \ \ \ \ \ \ \ \ \ \ 0.06 \ \ \ \ \ \ \ \ \ \ \ 0.06 \ \ \ \ \ \ \ \ \ \ \ 0.3[/tex]
[tex]2 \ \ \ \ \ \ \ \ \ 0.04\ \ \ \ \ \ \ \ \ 0.08\ \ \ \ \ \ \ \ \ 0.12 0.08\ \ \ \ \ \ \ \ \ 0.08\ \ \ \ \ \ \ \ \ 0.4\\\\ 3\ \ \ \ \ \ \ \ \ 0.02\ \ \ \ \ \ \ \ \ 0.04\ \ \ \ \ \ \ \ \ 0.06\ \ \ \ \ \ \ \ \ 0.04\ \ \ \ \ \ \ \ \ 0.04\ \ \ \ \ \ \ \ \ 0.2\\\\pmf X \ \ \ \ \ \ \ \ \ 0.1\ \ \ \ \ \ \ \ \ 0.2\ \ \ \ \ \ \ \ \ 0.3\ \ \ \ \ \ \ \ \ 0.2\ \ \ \ \ \ \ \ \ 0.2[/tex]`
In point b:
[tex]\to P(x<=1,y<=1)=0.01+0.02+0.03+0.06=0.12\\\\\to P(x<=1)=0.1+0.2=0.3 \\\\\to P(y<=1)=0.1+0.3=0.4\\\\\to P(x<=1 \ and\ y<=1)=P(x<=1) \times P(y<=1)=0.3 \times 0.4=0.12 \\\\[/tex]
In point c:[tex]\to P(X+Y<=1)=P(X=0,Y=1)+(X=1,Y=0)+P(X=0,Y=0)=0.02+0.03+0.01=0.06[/tex]
In point d:
[tex]\to P(X=0,Y=1)+P(X=0,Y=2)+P(X=0,Y=3)+P(X=0,Y=0)+P(X=1,Y=0)+P(X=2,Y=0)+P(X=3,Y=0)+P(X=4,Y=0) \\\\ \to 0.03+0.04+0.02+0.01+0.02+0.03+0.02+0.02=0.19[/tex]