contestada

Starting from rest, a Ferris wheel of diameter 30.0 m undergoes an angular acceleration of 0.0400 rad/s2. A certain rider is at the lowest point of the wheel just as it starts to move.
A) Find the velocity of the rider just as he completes a quarter of a turn.
B) Find the radial and tangential components of his acceleration at the same point.
C) How much farther must the wheel turn before the rider attains a speed of 6.00 m/s (the maximum that occurs during the ride)?
a. 5.32 m/s, up.
b. 0.600 m/s2, up.
1.88 m/s2 toward center.
d. 24.6°.

Respuesta :

Solution :

Given :

Diameter, D = 30 m

∴ Radius, R = 15 m

Angular acceleration, α = 0.044 [tex]$rad/s^2$[/tex]

a). Velocity of the rider just as he completes a quarter of a turn is :

[tex]$\omega_i = 0 \ rad/s$[/tex]

[tex]$\theta = \frac{\pi}{2}\ rad$[/tex]

V = R ω

∴[tex]$\omega^2_f=\omega^2_i + 2 \alpha \theta$[/tex]

 [tex]$\omega^2_f=0+ 2 \times 0.04 \times \frac{\pi}{2}$[/tex]

[tex]$\omega^2_f=0.1256$[/tex]

[tex]$\omega = \sqrt{0.1256}$[/tex]

   [tex]$=0.354 \ rad/s$[/tex]

∴ [tex]$V=R \omega_f$[/tex]

     [tex]$= 15 \times 0.354$[/tex]

    = 5.32 m/s up

b). Tangential acceleration

   [tex]$a_T= \alpha R$[/tex]

        = 0.04 x 15

       [tex]$= 0.600 \ m/s^2$[/tex]  up

Radial acceleration,

[tex]$a_r=\frac{V^2}{R}$[/tex]

   [tex]$=\frac{(5.32)^2}{15}$[/tex]

   [tex]$= 1.88 \ m/s^2$[/tex] towards center.

c). Final angular velocity

   given : [tex]$V_0 = 6 \ m/s$[/tex]

              [tex]$\omega_i = 0.354 \ rad/s$[/tex]

              [tex]$\alpha = 0.0400 \ rad/s^2$[/tex]

[tex]$\omega_f = \frac{6}{15} \ rad/s$[/tex]

[tex]$\omega^2_f=\omega^2_i + 2 \alpha \theta$[/tex]

[tex]$\left(\frac{6}{15}\right)^2=(0.354)^2 + 2 \times 0.04 \times \theta$[/tex]

[tex]$\theta = \frac{0.16-0.1256}{2 \times 0.04}$[/tex]

  = 0.43 rad

or [tex]$\theta = 0.43 \times \frac{180}{\pi}$[/tex]

      [tex]$24.6^\circ$[/tex]