Respuesta :

Answer:

[tex]f(x) = -1[/tex]

[tex]g(x) =6[/tex]

[tex]\frac{-1}{2x + 3} + \frac{6}{3x + 7}[/tex]

Step-by-step explanation:

The question is unreadable, however the real polynomial is:

The polynomial fraction is:

[tex]P = \frac{9x + 11}{6x^2 + 23x + 21}[/tex]

And the decomposition is:

[tex]\frac{f(x)}{2x + 3} + \frac{g(x)}{3x + 7}[/tex]

The solution is as follows:

[tex]P = \frac{f(x)}{2x + 3} + \frac{g(x)}{3x + 7}[/tex]

Substitute the expression for P

[tex]\frac{9x + 11}{6x^2 + 23x + 21} = \frac{f(x)}{2x + 3} + \frac{g(x)}{3x + 7}[/tex]

Expand the numerator of the polynomial

[tex]\frac{9x + 11}{(2x + 3)(3x + 7)} = \frac{f(x)}{2x + 3} + \frac{g(x)}{3x + 7}[/tex]

Take LCM

[tex]\frac{9x + 11}{(2x + 3)(3x + 7)} = \frac{f(x)*(3x + 7) + g(x)*(2x + 3)}{(2x + 3)(x + 7)}[/tex]

Cancel out both denominators

[tex]9x + 11} = f(x)*(3x + 7) + g(x)*(2x + 3)[/tex]

Represent f(x) as A and g(x) as B

[tex]9x + 11} = A*(3x + 7) + B*(2x + 3)[/tex]

Open bracket

[tex]9x + 11} = 3Ax + 7A + 2Bx + 3B[/tex]

[tex]9x + 11} = 3Ax + 2Bx+ 7A + 3B[/tex]

[tex]9x + 11} = (3A + 2B)x+ 7A + 3B[/tex]

By comparison:

[tex]3A + 2B = 9[/tex] ---- (1)

[tex]7A + 3B =11[/tex] ---- (2)

Make B the subject in (1)

[tex]B = \frac{9 - 3A}{2}[/tex]

Substitute [tex]B = \frac{9 - 3A}{2}[/tex] in (2)

[tex]7A + 3(\frac{9 - 3A}{2}) = 11[/tex]

Multiply through by 2

[tex]2*7A +2* 3(\frac{9 - 3A}{2}) = 11*2[/tex]

[tex]14A + 3(9 - 3A) = 22[/tex]

[tex]14A + 27 - 9A = 22[/tex]

Collect Like Terms

[tex]14A - 9A = 22-27[/tex]

[tex]5A = -5[/tex]

[tex]A = \frac{-5}{5}[/tex]

[tex]A = -1[/tex]

Recall that:

[tex]B = \frac{9 - 3A}{2}[/tex]

[tex]B = \frac{9 - 3 * -1}{2}[/tex]

[tex]B = \frac{9 + 3}{2}[/tex]

[tex]B = \frac{12}{2}[/tex]

[tex]B = 6[/tex]

A = -1 and B = 6

[tex]3A + 2B = 9[/tex] ---- (1)

[tex]7A + 3B =11[/tex] ---- (2)

So:

[tex]f(x) = A[/tex]

[tex]f(x) = -1[/tex]

[tex]g(x) =B[/tex]

[tex]g(x) =6[/tex]

And the decomposition is:

[tex]\frac{-1}{2x + 3} + \frac{6}{3x + 7}[/tex]