Respuesta :

Answer:

As given,

I = [tex]\int\limits {\frac{3x}{x^{2} - 2x} } \, dx[/tex]

Since the degree of the numerator is less than the degree of the denominator, we don't need to divide.

We factor the denominator as x(x-2)

The partial fraction decomposition is

[tex]\frac{3x}{x^{2} - 2x} = \frac{3x}{x(x-2)} = \frac{A}{x} + \frac{B}{x-2}\\ = \frac{A(x-2) + B(x)}{x(x-2)} \\[/tex]

we get

3x = A(x-2) + B(x)

⇒3x = x(A+B) - 2A

By comparing , we get

A+ B = 3 , -2A = 0

⇒A = 0 and B = 3- A = 3-0 = 3

∴ we get

A = 0, B = 3

Therefore, the integral become [tex]\int\limits {\frac{3x}{x^{2} - 2x} } \, dx = \int\limits {[\frac{0}{x} + \frac{3}{x-2} ] } \, dx[/tex]

Ver imagen Omm2